Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex.
نویسندگان
چکیده
The membrane-bound form of Fas ligand (FasL) signals apoptosis in target cells through engagement of the death receptor Fas, whereas the proteolytically processed, soluble form of FasL does not induce cell death. However, soluble FasL can be rendered active upon cross-linking. Since the minimal extent of oligomerization of FasL that exerts cytotoxicity is unknown, we engineered hexameric proteins containing two trimers of FasL within the same molecule. This was achieved by fusing FasL to the Fc portion of immunoglobulin G1 or to the collagen domain of ACRP30/adiponectin. Trimeric FasL and hexameric FasL both bound to Fas, but only the hexameric forms were highly cytotoxic and competent to signal apoptosis via formation of a death-inducing signaling complex. Three sequential early events in Fas-mediated apoptosis could be dissected, namely, receptor binding, receptor activation, and recruitment of intracellular signaling molecules, each of which occurred independently of the subsequent one. These results demonstrate that the limited oligomerization of FasL, and most likely of some other tumor necrosis factor family ligands such as CD40L, is required for triggering of the signaling pathways.
منابع مشابه
Resistance to Fas-mediated apoptosis in EBV-infected B cell lymphomas is due to defects in the proximal Fas signaling pathway.
Post-transplant lymphoproliferative disorder is characterized by the outgrowth of EBV-infected B cell lymphomas in immunosuppressed transplant recipients. Using a panel of EBV-infected spontaneous lymphoblastoid cell lines (SLCL) derived from post-transplant lymphoproliferative disorder patients, we assessed the sensitivity of such lymphomas to Fas-mediated cell death. Treatment with either an ...
متن کاملDistinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis.
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRA...
متن کاملAn essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes.
Fas, a member of the tumor necrosis factor receptor family, can upon ligation by its ligand or agonistic antibodies trigger signaling cascades leading to cell death in lymphocytes and other cell types. Such signaling cascades are initiated through the formation of a membrane death-inducing signaling complex (DISC) that includes Fas, the Fas-associated death domain protein (FADD) and caspase-8. ...
متن کاملcMet and Fas receptor interaction inhibits death-inducing signaling complex formation in endothelial cells.
Fas receptor is constitutively expressed on endothelial cells; however, these cells are highly resistant to Fas-mediated apoptosis. In this study, we examined death-inducing signaling complex (DISC) formation in endothelial cells after Fas receptor stimulation. Nonfunctional DISC formation was observed in human umbilical vein endothelial cells (HUVECs). Fas-associated death domain (FADD) and la...
متن کاملPalmitoylation is required for efficient Fas cell death signaling.
Localization of the death receptor Fas to specialized membrane microdomains is crucial to Fas-mediated cell death signaling. Here, we report that the post-translational modification of Fas by palmitoylation at the membrane proximal cysteine residue in the cytoplasmic region is the targeting signal for Fas localization to lipid rafts, as demonstrated in both cell-free and living cell systems. Pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2003